metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mamiko Odoko* and Nobuo Okabe

Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan

Correspondence e-mail: odoko@phar.kindai.ac.jp

Key indicators

Single-crystal X-ray study T = 123 KMean σ (C–C) = 0.003 Å Disorder in solvent or counterion R factor = 0.026 wR factor = 0.070 Data-to-parameter ratio = 14.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. (Adeninato-N⁹)[N-(2-aminoethyl)salicylideneiminato]palladium(II) 3.5-hydrate

In the title compound, {[(2-aminoethyl)iminomethyl]phenolato- $\kappa^3 N, N', O$ }(9*H*-purine-6-aminato- κN^9)palladium(II) 3.5-hydrate, [Pd(C₅H₄N₅)(C₉H₁₁N₂O)]·3.5H₂O, the Pd^{II} ion is coordinated by the N9 atom of the adeninate ligand, two N atoms and one O atom of the *N*-(2-aminoethyl)-salicylideneiminate in a square-planar coordination. The crystal structure is stabilized by centrosymmetric stacking interactions between neighbouring complexes, and by hydrogen bonds involving adeninate and *N*-(2-aminoethyl)-salicylideneiminate ligands, and non-coordinated water molecules.

Comment

Since the discovery of the antitumour Pt^{II} complex cisplatin (Rosenberg *et al.*, 1965, 1969), it has been important to analyse the interaction of metal ions with nucleic acids and nucleobases. Some studies have revealed interactions between Pt^{II} group metal ions and nucleobases (Brüning *et al.*, 2002; Amantia *et al.*, 2003; Zhang *et al.*, 2005). In addition, some complexes of transition metal ions with salen-type Schiff base ligands [salen is *N*,*N'*-ethylenebis(salicylideneaminato)] have been tested as DNA reactive agents (Rokita & Burrows, 2003).

The aim of this study was to determine the binding function to nucleobases of a Pt^{II} group metal ion, Pd^{II}, coordinated by a salen-type ligand. Therefore, we synthesized an adeninato-Pd^{II}–SalEn [SalEn is *N*-(2-aminoethyl)salicylideneiminato] complex, (I), and analyzed its structure.

The title compound, (I), is shown in Fig. 1. The Pd^{II} ion is coordinated by atom N9 of the adeninate ligand, and atoms N11, N12 and O11 of the SalEn ligand, forming a squareplanar coordination around the metal centre. Coordination through atom N9 of the adeninate ligand [Pd-N9 = 2.037 (2) Å] also occurs in the crystal structure of *trans*-(*n*-Bu₃P)₂Pd(adeninato)₂·4CH₃OH [Pd-N9 = 2.015 (3) Å; Beck

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 17 October 2005 Accepted 17 November 2005 Online 23 November 2005

A view of the structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii. A dashed line indicates the intramolecular hydrogen bond. All disorder components are shown.

Figure 2

A view of the crystal packing of (I), showing the centrosymmetric stacking interactions between neighbouring complexes. Dashed lines indicate hydrogen bonds. [Symmetry code: (i) $\frac{1}{2} - x$, $\frac{3}{2} - y$, -z.]

Figure 3

A view of the hydrogen bonds (dashed lines) between adeninate ligands, and hydrogen-bond bridges formed by O4 water molecules. [Symmetry codes: (iii) $\frac{1}{2} + x$, $y - \frac{1}{2}$, z; (v) $\frac{1}{2} - x$, $y - \frac{1}{2}$, $\frac{1}{2} - z$.]

Figure 4

A view of the hydrogen-bond network (dashed lines) involving the disordered water molecules. All disorder components are shown. [Symmetry codes: (i) $\frac{1}{2} - x$, $\frac{3}{2} - y$, -z; (iii) $\frac{1}{2} + x$, $y - \frac{1}{2}$, z; (iv) 1 - x, y, $\frac{1}{2} - z$; (v) $\frac{1}{2} - x$, $y - \frac{1}{2}$, $\frac{1}{2} - z$; (vi) x, 1 + y, z; (vii) 1 - x, 2 - y, -z.]

et al., 1979], in agreement with the fact that N9 is the most basic of the four available N atoms on the adeninate anion (Hodgson, 1977; Beck *et al.*, 1979). While the Pd^{II} ion and its coordinated atoms lie almost in a plane (r.m.s. deviation of fitted atoms = 0.056 Å), the overall structure of the complex is not planar. The dihedral angle between the adeninate ligand

and salicylidene plane (O11/C11-C17/N11) is 12.23 (6)°. An intramolecular hydrogen bond is observed between the amino group of SalEn and the adeninate ligand (N12-H14···N3; Fig. 1 and Table 2).

The crystal packing is stabilized by centrosymmetric stacking interactions between neighbouring complexes (Fig. 2), the separations ranging from 3.2642 (2) (Pd1···Pd1ⁱ) to 3.457 (3) Å [C4...C17ⁱ; symmetry code: (i) $\frac{1}{2} - x, \frac{3}{2} - y, -z$], and by hydrogen bonds involving SalEn ligands (N12-H15...O11ⁱ; Table 2). The crystal structure is also stabilized by hydrogen bonds between neighbouring adeninate ligands $[N6-H3\cdots N7^{ii}; symmetry code: (ii) -x, 2 - y, -z]$ (Fig. 3 and Table 2), hydrogen-bond bridging of two symmetry-related adeninate ligands via a water molecule [N1ⁱⁱⁱ-O4···N1^v; symmetry codes: (iii) $\frac{1}{2} + x$, $-\frac{1}{2} + y$, +z; $(v) \frac{1}{2} - x$, $-\frac{1}{2} + y$, $\frac{1}{2} - z$] (Fig. 3 and Table 2), and a complex network of hydrogen bonds involving adeninate ligands and disordered water molecules (Fig. 4 and Table 2).

Experimental

N,N'-Ethylenebis(salicylideneamine) dissolved in EtOH-H₂O (40%) v/v) was reacted with adenine and sodium tetrachloropalladium(II) trihydrate dissolved in water at 298 K (molar ratio = 2:1:2). This mixture was diluted with 50% KCl solution. Light-brown crystals appeared from this mixture after one month of evaporation at 298 K.

Crystal data

$[Pd(C_5H_4N_5)(C_9H_{11}N_2O)]\cdot 3.5H_2O$	$D_x = 1.759 \text{ Mg m}^{-3}$
$M_r = 466.81$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 14802
a = 23.75 (2) Å	reflections
b = 6.869 (5) Å	$\theta = 3.1-27.5^{\circ}$
c = 21.65 (2) Å	$\mu = 1.09 \text{ mm}^{-1}$
$\beta = 93.46 \ (3)^{\circ}$	T = 123 (1) K
$V = 3526 (5) \text{ Å}^3$	Plate, brown
Z = 8	0.50 \times 0.15 \times 0.05 mm

Data collection

Rigaku R-AXIS RAPID	4009 independent reflection
diffractometer	3440 reflections with $F^2 >$
ω scans	$R_{\rm int} = 0.014$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(ABSCOR; Higashi, 1995)	$h = -30 \rightarrow 30$
$T_{\min} = 0.682, T_{\max} = 0.947$	$k = -8 \rightarrow 8$
17133 measured reflections	$l = -28 \rightarrow 28$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.070$ S = 1.074009 reflections 283 parameters H-atom parameters constrained ons $2\sigma(F^2)$

 $w = 1/[\sigma^2(F_0^2) + (0.0397P)^2]$ +7.5219P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 1.61 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.70 \text{ e } \text{\AA}^{-3}$

Table 1

0 1 / 1			/ A O'	<u>۱</u>
Nelected	geometric	parameters	$(\mathbf{A})^{\vee}$	۱
Sciected	geometrie	parameters	(11,	ŀ

Pd1-O11	1.993 (2)	Pd1-N11	1.968 (2)
Pd1-N9	2.037 (2)	Pd1-N12	2.038 (2)
O11-Pd1-N9	88.73 (7)	N9-Pd1-N11	175.49 (7)
O11-Pd1-N11	93.97 (7)	N9-Pd1-N12	94.88 (7)
O11-Pd1-N12	175.05 (7)	N11-Pd1-N12	82.65 (8)

Table 2	
---------	--

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N12−H14···N3	0.90	2.22	2.845 (4)	126
$N12-H15\cdots O11^{i}$	0.90	2.39	3.175 (3)	145
N6−H3···N7 ⁱⁱ	0.86	2.24	3.040 (3)	155
O4−H31···N1 ⁱⁱⁱ	0.99	2.00	2.920 (3)	154
$O4-H31^{iv}\cdots N1^{v}$	0.99	2.00	2.920 (3)	154
$O1 - H21 \cdot \cdot \cdot N7^{i}$	0.93	2.04	2.960 (3)	170
O1−H22···O2	0.94	1.86	2.783 (4)	167
$O2-H24\cdots O4^{vi}$	0.95	1.97	2.752 (4)	137
O2−H25···O32	0.96	1.59	2.473 (8)	151
$O32-H29\cdots N1^{v}$	0.96	1.92	2.804 (6)	154
$O32 - H30 \cdot \cdot \cdot O2^{iv}$	0.96	2.25	3.095 (8)	146
$O1 - H23 \cdots O1^{vii}$	0.95	1.88	2.793 (4)	163
O2−H26···O1	0.95	1.99	2.783 (4)	139
O31−H27···O2	0.96	1.98	2.811 (8)	144
$O31 - H28 \cdot \cdot \cdot N1^v$	0.96	2.30	3.260 (7)	179
$N6^{iii} - H2^{iii} \cdots O31$	0.86	2.16	2.877 (6)	140

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z$; (ii) -x, -y + 2, -z; (iii) $x + \frac{1}{2}, y - \frac{1}{2}, z$; (iv) $x + 1, y, -z + \frac{1}{2};$ (v) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2};$ (vi) x, y + 1, z; (vii) -x + 1, -y + 2, -z.

One water molecule was found to be disordered over two sites, O31 and O32; the occupancies were refined and then fixed at 0.5. For water molecules O1, O2, O31 and O32, H atoms were found in difference maps with some disordered over two sites. Occupancies were refined and fixed in the last cycles: H22, bonded to O1, is disordered with H23 (0.56/0.54); H25, bonded to O2, is disordered with H26 (0.22/0.78); H27 and H28 are bonded to O31 with occupancies 0.5; H29 and H30 are bonded to O32, with occupancies 0.5. In the last cycles, the coordinates of H atoms of water molecules were fixed and their isotropic displacement parameters were fixed at $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm O})$. Other H atoms were placed in idealized positions and refined as riding, with $U_{iso}(H) = 1.5U_{eq}(\text{carrier atom})$. Constrained distances: 0.93 Å for aromatic CH; 0.97 Å for methylene CH₂; 0.90 Å for coordinated amine; 0.86 Å for uncoordinated amine. The maximum electron density appears near atom O32.

Data collection: RAPID-AUTO (Rigaku, 1998; cell refinement: PROCESS-AUTO (Rigaku/MSC, 2005); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

References

Amantia, D., Price, C., Shipman, M. A., Elsegood, M. R. J., Clegg, W. & Houlton, A. (2003). Inorg. Chem. 42, 3047-3056.

Beck, W. M., Calabrese, J. C. & Kottmair, N. D. (1979). Inorg. Chem. 18, 176-182

Brüning, W., Ascaso, I., Freisinger, E., Sabat, M. & Lippert, B. (2002). Inorg. Chim. Acta, 339, 400-410.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Hodgson, D. J. (1977). Prog. Inorg. Chem. 23, 211-254.

- Rigaku (1998). *RAPID-AUTO*. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
- Rigaku/MSC (2005). PROCESS-AUTO and CrystalStructure (Version 3.7). Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Rokita, S. E. & Burrows, C. J. (2003). Small Molecule DNA and RNA Binders, Vol. 1, edited by M. Demeunynck, C. Bailly & W. D. Wilson, pp. 126–145. Weinheim: Wiley-VCH.
- Rosenberg, B., Camp, L. V. & Krigas, T., (1965). Nature (London), 205, 698–699.
- Rosenberg, B., Camp, L. V., Trosko, J. E. & Mansour, V. H. (1969). *Nature* (*London*), 222, 385–386.
 Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. University of
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Zhang, Z. Q., Zhou, L. X., He, Q. & Zhao, Y. Y. (2005). *Jiegou Huaxue*, **24**, 114–120. (In Chinese.)